Infinitely many geometrically distinct solutions for periodic Schrödinger–Poisson systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Periodic Solutions of Nonlinear Wave Equations on S

The existence of time periodic solutions of nonlinear wave equations utt −∆nu + ` n− 1 2 ́2 u = g(u)− f(t, x) on n-dimensional spheres is considered. The corresponding functional of the equation is studied by the convexity in suitable subspaces, minimax arguments for almost symmetric functional, comparison principles and Morse theory. The existence of infinitely many time periodic solutions is o...

متن کامل

Infinitely Many Periodic Solutions for Nonautonomous Sublinear Second-Order Hamiltonian Systems

and Applied Analysis 3 Our main result is the following theorem. Theorem 1.1. Suppose that F t, x satisfies assumptions (A) and 1.7 . Assume that lim sup r→ ∞ inf x∈RN,|x| r |x|−2α ∫T 0 F t, x dt ∞, 1.8 lim inf R→ ∞ sup x∈RN,|x| R |x|−2α ∫T 0 F t, x dt −∞. 1.9

متن کامل

Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian

* Correspondence: [email protected] School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, P. R. China Abstract In this article, we investigate the existence of infinitely many periodic solutions for some nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained using critical point theory. 2...

متن کامل

Existence of Infinitely Many Periodic Solutions for Second-order Nonautonomous Hamiltonian Systems

By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2019

ISSN: 1687-2770

DOI: 10.1186/s13661-019-1177-1